Tenth-order rational-harmonic frequency multiplication and detuning of optical pulse injection-locked erbium-doped fiber laser.

نویسندگان

  • Gong-Ru Lin
  • Jung-Rung Wu
چکیده

The jitter and frequency-detuning dynamics of a 10-GHz rational-harmonic frequency-multiplied pulse train generated from an erbium-doped fiber laser (EDFL) is studied. The EDFL is self-feedback seeded and optically injection locked by a gain-switched laser diode (GSLD) with a pulse width and an average power of 17.6 ps and 0.2 mW, respectively, at a repetition frequency of 1 GHz. The repetition frequency of the optical pulse train can be tenth-order multiplied by a slight detuning of the repetition frequency of the GSLD to match the rational-harmonic injection-locked condition of the EDFL. As the repetition frequency is multiplied from 1 to 10 GHz, the peak power, the pulse width, and the frequency-detuning bandwidth of the injection-locked EDFL pulses decrease from 1.2 to 0.3 W, from 40 to 21 ps, and from 40 to 9 kHz, respectively. The timing jitter of the injection-locked EDFL repeated at 1 GHz remains unchanged (< 0.5 ps) within the detuning bandwidth, which inevitably increases to 1.2 ps after tenth-order multiplication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency detuning properties of EDFL pulses generated by harmonic mode-locking and regenerative amplification: a comparison

We compare the frequency detuning properties of optical pulses generated from erbium-doped fiber lasers (EDFL's) by using harmonic mode-locking and regenerative amplification techniques. The frequency detuning range of regeneratively amplified pulse (17.78 kHz) is wider than that of harmonic mode-locked pulses (7 kHz). The regeneratively amplidied EDFL pulse has a smaller pulsewidth (22ps), a h...

متن کامل

Ultrahigh supermode noise suppressing ratio of a semiconductor optical amplifier filtered harmonically mode-locked Erbium-doped fiber laser.

The supermode noise suppressing ratio (SMSR) and the phase noise of a harmonically mode-locked Erbium-doped fiber laser (HML-EDFL) with an intra-cavity semiconductor optical amplifier (SOA) and an optical band-pass filter (OBPF) are improved and compared with a state-of-the-art Fabry-Perot laser diode (FPLD) injection-mode-locked EDFL. By driving the intra-cavity SOA based high-pass filter at u...

متن کامل

Stabilization of actively mode-locked Er-doped fiber lasers in the rational-harmonic frequency-doubling mode-locking regime.

Stabilization of an actively mode-locked fiber laser in the frequency-doubling rational-harmonic mode-locking regime is demonstrated experimentally for the first time to the authors' knowledge. The stabilization is achieved by a method based on minimization of the average optical power at the second output of a dual-output Mach-Zehnder modulator used as a mode locker. This method produces long-...

متن کامل

Properties of the pulse train generated by repetition-rate-doubling rational-harmonic actively mode-locked Er-doped fiber lasers.

We demonstrate for the first time to our knowledge, experimentally and theoretically, that the pulse-to-pulse amplitude fluctuations that occur in pulse trains generated by actively mode-locked Er-doped fiber lasers in a repetition-rate-doubling rational-harmonic mode-locking regime are completely eliminated when the modulation frequency is properly tuned. Irregularity of the pulse position in ...

متن کامل

Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser.

We study the rational harmonic mode-locking (RHML) order dependent pulse shortening force and dynamic chirp characteristics of a gain-saturated semiconductor optical amplifier fiber laser (SOAFL) under dark-optical-comb injection, and discuss the competition between mode-locking mechanisms in the SOAFL at high-gain and strong optical injection condition at higher RHML orders. The evolutions of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 44 12  شماره 

صفحات  -

تاریخ انتشار 2005